Lesson 13: Utility II
Yukio Kawashima (July 12, 2024)
© IBM Corp. 2024
Approximate QPU time to run this experiment is 2 m 30 s.
Click here to download this notebook in Jupyter format.
Click here to download the pdf of the original lecture. Please note that some code snippets may become deprecated since these are static images.
Note that this notebook used texts, illustration, and codes in a tutorial notebook for Qiskit Algorithms.
1. Introduction and review of time-evolution
This notebook follows the methods and techniques of lesson 7. Our goal is to numerically solve the time-dependent Schrödinger equation. As discussed in lesson 7, Trotterization consists in the successive application of a quantum gate or gates, chosen to approximate the time evolution of a system for a time slice. We repeat that discussion here for convenience. Feel free to skip to the code cells below if you have recently reviewed lesson 7.
Following from the Schrödinger equation, the time evolution of a system initially in the state takes the form:
where is the time-independent Hamiltonian governing the system. We consider a Hamiltonian that can be written as a weighted sum of Pauli terms , with representing a tensor product of Pauli terms acting on qubits. In particular, these Pauli terms might commute with one another, or they might not. Given a state at time , how do we obtain the system's state at a later time using a quantum computer? The exponential of an operator can be most easily understood through its Taylor series:
Some very basic exponentials, like can be implemented easily on quantum computers using a compact set of quantum gates. Most Hamiltonians of interest will not have just a single term, but will instead have many terms. Note what happens if :
When and commute, we have the familiar case (which is also true for numbers, and variables and below):
But when operators do not commute, terms cannot be rearranged in the Taylor series to simplify in this way. Thus, expressing complicated Hamiltonians in quantum gates is a challenge.
One solution is to consider very small time , such that the first-order term in the Taylor expansion dominates. Under that assumption:
Of course, we may need to evolve our state for a longer time. That is accomplished by using many such small steps in time. This process is called Trotterization:
Here is the time slice (evolution step) that we are choosing. As a result, a gate to be applied times is created. A smaller timestep leads to a more accurate approximation. However, this also leads to deeper circuits which, in practice, leads to more error accumulation (a non-negligible concern on near-term quantum devices).
Today, we will study the time evolution of the Ising model on linear lattices of and sites. These lattices consist of an array of spins that interact only with their nearest neighbors. These spins can have two orientations: and , which correspond to a magnetization of and respectively.
where describes the interaction energy, and the magnitude of an external field (in the x-direction above, but we will modify this). Let us write this expression using Pauli matrices, and considering that the external field has an angle with respect to the transversal direction,
This Hamiltonian is useful in that it allows us to easily study the effects of an external field. In the computational basis, the system will be encoded as follows:
Quantum state | Spin representation |
---|---|
We will start investigating the time evolution of such a quantum system. More specifically, we will visualize the time-evolution of certain properties of the system like magnetization.
Output:
'1.3.0'
No output produced
2. Defining the transverse-field Ising Hamiltonian
We here consider the 1-D transverse-field Ising model
First, we will create a function that takes in the system parameters , , and , and returns our Hamiltonian as a
2.1 Activity 1
Construct a function to build a transverse-field Ising Hamiltonian (see the equation above) with arguments of "the number of qubits", "J parameter", and "h parameter". Try this on your own using previous examples. Scroll down for the solution.
Solution:
No output produced
We will start investigating the time evolution of a quantum system, while keeping track of magnetization. We here compare the results of the Statevector and Matrix Product State simulators.
Define the Hamiltonian
The system that we now consider has a size of .
Output:
SparsePauliOp(['IIIIIIIIIIIIIIIIIIZZ', 'IIIIIIIIIIIIIIIIIZZI', 'IIIIIIIIIIIIIIIIZZII', 'IIIIIIIIIIIIIIIZZIII', 'IIIIIIIIIIIIIIZZIIII', 'IIIIIIIIIIIIIZZIIIII', 'IIIIIIIIIIIIZZIIIIII', 'IIIIIIIIIIIZZIIIIIII', 'IIIIIIIIIIZZIIIIIIII', 'IIIIIIIIIZZIIIIIIIII', 'IIIIIIIIZZIIIIIIIIII', 'IIIIIIIZZIIIIIIIIIII', 'IIIIIIZZIIIIIIIIIIII', 'IIIIIZZIIIIIIIIIIIII', 'IIIIZZIIIIIIIIIIIIII', 'IIIZZIIIIIIIIIIIIIII', 'IIZZIIIIIIIIIIIIIIII', 'IZZIIIIIIIIIIIIIIIII', 'ZZIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIX', 'IIIIIIIIIIIIIIIIIIXI', 'IIIIIIIIIIIIIIIIIXII', 'IIIIIIIIIIIIIIIIXIII', 'IIIIIIIIIIIIIIIXIIII', 'IIIIIIIIIIIIIIXIIIII', 'IIIIIIIIIIIIIXIIIIII', 'IIIIIIIIIIIIXIIIIIII', 'IIIIIIIIIIIXIIIIIIII', 'IIIIIIIIIIXIIIIIIIII', 'IIIIIIIIIXIIIIIIIIII', 'IIIIIIIIXIIIIIIIIIII', 'IIIIIIIXIIIIIIIIIIII', 'IIIIIIXIIIIIIIIIIIII', 'IIIIIXIIIIIIIIIIIIII', 'IIIIXIIIIIIIIIIIIIII', 'IIIXIIIIIIIIIIIIIIII', 'IIXIIIIIIIIIIIIIIIII', 'IXIIIIIIIIIIIIIIIIII', 'XIIIIIIIIIIIIIIIIIII'],
coeffs=[-1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j,
-1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j,
-1.+0.j, -1.+0.j, -1.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j,
5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j,
5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j])
Set the parameters of the time-evolution simulation
Here we will consider the Lie–Trotter (first order).
No output produced
Prepare the quantum circuit (Initial state)
Create an initial state. We will start from the ground state, which is a ferromagnetic state (all up or all down). Here, we use an example of all ups (which is all '0').
Output:
Prepare the quantum circuit 2 (Single circuit for time evolution)
We here construct a circuit for a single time step using Lie–Trotter.
The Lie product formula (first order) is implemented in the LieTrotter class. A first order formula consists of the approximation stated in the introduction, where the matrix exponential of a sum is approximated by a product of matrix exponentials:
Let us count the operations for this circuit.
Output:
Trotter step with Lie-Trotter
-----------------------------
Depth: 58
Gate count: 77
Nonlocal gate count: 38
Gate breakdown: CX: 38, U3: 20, U1: 19
Set the operators to be measured
Let us define a magnetization operator .
Output:
magnetization : SparsePauliOp(['IIIIIIIIIIIIIIIIIIIZ', 'IIIIIIIIIIIIIIIIIIZI', 'IIIIIIIIIIIIIIIIIZII', 'IIIIIIIIIIIIIIIIZIII', 'IIIIIIIIIIIIIIIZIIII', 'IIIIIIIIIIIIIIZIIIII', 'IIIIIIIIIIIIIZIIIIII', 'IIIIIIIIIIIIZIIIIIII', 'IIIIIIIIIIIZIIIIIIII', 'IIIIIIIIIIZIIIIIIIII', 'IIIIIIIIIZIIIIIIIIII', 'IIIIIIIIZIIIIIIIIIII', 'IIIIIIIZIIIIIIIIIIII', 'IIIIIIZIIIIIIIIIIIII', 'IIIIIZIIIIIIIIIIIIII', 'IIIIZIIIIIIIIIIIIIII', 'IIIZIIIIIIIIIIIIIIII', 'IIZIIIIIIIIIIIIIIIII', 'IZIIIIIIIIIIIIIIIIII', 'ZIIIIIIIIIIIIIIIIIII'],
coeffs=[0.05+0.j, 0.05+0.j, 0.05+0.j, 0.05+0.j, 0.05+0.j, 0.05+0.j, 0.05+0.j,
0.05+0.j, 0.05+0.j, 0.05+0.j, 0.05+0.j, 0.05+0.j, 0.05+0.j, 0.05+0.j,
0.05+0.j, 0.05+0.j, 0.05+0.j, 0.05+0.j, 0.05+0.j, 0.05+0.j])
Perform time-evolution simulation
We will monitor the magnetization (expectation value of the magnetization operator). We will use Statevector and MPS simulators and compare the results.
No output produced
Plot the time evolution of the observables
We plot the expectation values we measured against time. Confirm that the results from statevector and matrix product space simulators agree.
Output:
Text(0.5, 0.98, 'Observable evolution')
We will start investigating the time evolution of a quantum system, while keeping track of properties. We here compare the results of the Matrix Product State simulator and the actual quantum device.
2.2 Activity 2
Define the Hamiltonian
The system that we now consider has a size of . Note that the other conditions are the same from the 20-qubit problem. Try this on your own; scroll down for the solution.
Solution:
Output:
SparsePauliOp(['IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZ', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZI', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'ZZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIX', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXI', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'XIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'],
coeffs=[-1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j,
-1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j,
-1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j,
-1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j,
-1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j,
-1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j,
-1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j,
-1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j,
-1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, -1.+0.j, 5.+0.j, 5.+0.j, 5.+0.j,
5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j,
5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j,
5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j,
5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j,
5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j,
5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j,
5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j,
5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j, 5.+0.j,
5.+0.j, 5.+0.j, 5.+0.j])
2.3 Activity 3
Create an initial state. We will start from the ground state, which is a ferromagnetic state (all up or all down). Here, we use an example of all ups (which is all '0'). Try this on your own; scroll down for the solution.
Solution:
Output:
2.4 Activity 4
Prepare the quantum circuit 2 (Single circuit for time evolution) for the 70-qubit problem
We here construct a circuit for a single time step using Lie–Trotter.
Exactly as in the 20-qubit case, the Lie product formula (first order) is implemented in the LieTrotter class. Again the first order formula consists of the approximation stated above:
Try this yourself, building from the example of the 20-qubit case. As before, count the operations for this circuit.
Solution:
Output:
Trotter step with Lie-Trotter
-----------------------------
Depth: 208
Gate count: 277
Nonlocal gate count: 138
Gate breakdown: CX: 138, U3: 70, U1: 69
2.5 Activity 5
Set the operators to be measured
We define a magnetization operator exactly analogous to the one from the 20-qubit case: . Try this yourself by modifying the 20-qubit solution.
Solution:
Output:
magnetization : SparsePauliOp(['IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZ', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZI', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'IZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII', 'ZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'],
coeffs=[0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j,
0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j,
0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j,
0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j,
0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j,
0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j,
0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j,
0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j,
0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j,
0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j,
0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j,
0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j,
0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j,
0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j,
0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j,
0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j,
0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j, 0.01428571+0.j,
0.01428571+0.j, 0.01428571+0.j])
2.6 Activity 6
Perform time-evolution simulation
We will monitor the magnetization (expectation value of the magnetization operator). We will use the MPS simulator to get the reference value to compare the results computed from the hardware. You have used the MPS simulator before in this tutorial. Modify that example where necessary to fit this new calculation.
Solution:
No output produced
As in all previous lessons, we will implement the Qiskit patterns framework. The lesson up to this point has been focused on creating the correct quantum circuits to describe our problem. This is effectively Step 1.
Step 2: Optimize for target hardware
We start by defining the target backend.
Output:
'ibm_sherbrooke'
We transpile the circuits and gather them in a list. This may take a few minutes.
No output produced
Step 3: Execute on target hardware
We will define the Runtime Estimator and construct the list of PUBs. We must also apply the layout to the operators to be measured.
No output produced
We are now ready to run the job.
Output:
cvv5jch7cb40008e5bw0
Step 4: Post-process results
We will first get the results.
No output produced
Now we must extract the expectation values from these results.
No output produced
We will use this for comparison below. First, let us see if we can optimize our circuits even further.
3. Solution using a real quantum computer II
Let us return to Qiskit patterns step 1, and see if we can reduce the depth of our circuit.
3.1 Step 1. Map the problem to quantum circuits and operators
Activity 7
Construct a time-evolution circuit. Use your knowledge from previous lessons to try to reduce the depth of the circuit.
Solution:
Output:
Trotter step with Lie-Trotter
-----------------------------
Depth: 7
Gate count: 277
Nonlocal gate count: 138
Gate breakdown: CX: 138, U3: 70, U1: 69
This was very successful. We can now proceed with the remaining Qiskit patterns steps.
Step 2. Optimize for target hardware
Transpile the circuits and gather them in a list. Once again, this may take a few minutes.
No output produced
Define the Runtime Estimator and construct the list of PUBs.
No output produced
Step 3. Execute on target hardware
Run the job.
Output:
cvv5nny5sat0008hwtag
Get the results.
No output produced
Step 4. Postprocessing
Extract the expectation values from the results.
No output produced
Transform the list into numpy arrays for plotting.
No output produced
Now let us plot the results and compare the hardware (default and shallow circuit) results with the MPS simulator. How does the error in the real hardware influence the results?
Output:
Text(0.5, 0.98, 'Observable evolution')
Congratulations! You have moved one step further in your utility-scale quantum journey. There is only one lesson left!
Was this page helpful?